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Abstract. By using a supersymmetric functional integral formalism, the vibrational fre- 
quency spectrum of a one-dimensional monatomic linear-chain crystal in the presence of 
force constant disorder is calculated exactly in the continuum limit. More general disor- 
dered problems in one-dimensional vibrational systems can also be dealt with exactly using 
the same method. 

1. Introduction 

The problem of impurities in crystals has been attracting attention since the early 1950s 
[ l a ] .  There are a large number of publications in the literature investigating how 
the impurities affect the vibrational spectra of crystals [5-201. It is well known that 
both electronic and vibrational problems can be treated in similar ways. For example, 
the average t-matrix method and coherent potential approximation have been used 
extensively to find either the electronic density of states or the vibrational frequency 
spectra [8, 91. 

The most common types of disorder in electronic systems are site (diagonal) and 
bond (off-diagonal) disorder, where site disorder physically arises from, for instance, 
randomly distributed external charges while bond disorder comes from topologically 
disordered bond defects in the systems. Correspondingly, we also have two types of 
disorder in phonon systems, namely, mass and force constant disorder, respectively. 
The mass disorder is diagonal, hence it corresponds to the site disorder in electronic 
systems, while the force constant disorder corresponds to bond disorder. 

For the electronic systems, due to the stochasticity of the Schrodinger equation de- 
scribing electrons moving in a random potential, some of the problems (with Gaussian 
or Poisson random potentials) can be solved exactly in one dimension using classi- 
cal methods that solve the Fokker-Planck equation and the recent supersymmetric 
functional integral formalism [4, 21, 221. For phonon systems with either mass or 
force constant disorder, most of the theoretical investigations [ 10-1 51 have confined 
themselves to either single-site approximation theories or arbitrary concentration using 
various computational methods, for instance the equation-of-motion method [16] or 
the recursion method [17, 18, 191. There has been so far no exact theory reported 
for calculating analytically arbitrary impurity concentrations in phonon systems to the 
author’s knowledge. 
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However, the supersymmetric functional integral formalism provides a useful 
method to average over the random disorder, hence i t  is an ideal candidate to in- 
vestigate the phonon disorder problem. The traditional replica method fails to give 
correct results in some cases because the procedure whereby the replica index n --f 0 is 
mathematically unjustifiable (see [23]) ; the supersymmetry method, however, does not 
require this procedure. In [23], the authors studied the (GG) correlator of a typical 
problem for which the exact results are known but when the replica method is applied 
to either the bosonic or the fermionic manifold both results are incorrect unless one 
adopts the supersymmetric approach. Nonetheless, as far as the single-particle Green 
function (G) is concerned, no work has been reported where the replica results are 
different from those of the supersymmetric approach. In this paper, we employ a 
supersymmetric functional integral formalism and introduce superfields to deal with 
the disorder averaging prior to any other calculations. As a result, a problem of force 
constant disorder in phonon systems can be mapped to a problem of an electron 
moving in an effective random potential in the continuum limit of the supersymmetric 
functional integral formalism. It follows that one can obtain exact results for the 
vibrational frequency spectrum as in the cases of the electronic systems studied in [4, 
211 and [22]. 

Unfortunately, for the problem of mass disorder in phonon systems, there is a 
non-trivial average one has to perform, namely, the average over (exp(C,,, l/M(V))), 
where l/M(!l') is the disordered mass term in the usual Lagrangian of phonon systems. 
It is hard to perform the average even for the simplest Gaussian-distributed random 
mass disorder because the random variables are in the denominator. One has to devise 
a more sophisticated method to deal with this average in order to obtain exact results; 
this is currently under investigation and the results will be published in a subsequent 
paper. 

This paper is organised as follows : we introduce the general supersymmetric 
functional integral formalism and specify the random disordered lattice model in $2, 
give analysis and results in 93 and conclusions in 94. 

2. Supersymmetric functional integral formalism 

The model Lagrangian density we chose is the general one-dimensional linear chain 
with only nearest-neighbour interaction being considered (see [24]); i t  reads 

where 4 is displacement field and i a  sets up the energy scale, i.e. 3. is in units of 
(energy * (time)2)/length, c2 is the scaled force constant in units of (length)2/(time)2, a 
is the lattice constant and V ( 4 )  is the so called cage potential which we will explain 
later. We take V = cj2/2 and 00' is the strength of the potential. The first term is the 
usual kinetic energy term and the second can be converted to the dynamical matrix 
for the one-dimensional monatomic linear chain straightforwardly. 

The vibrational frequency distribution function is given by 

1 
lim Im G(w2) = - 

1 
w2 - 0," -if  n2aN F+O+ 
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with the sum on n over all modes, where 3.a is introduced for later convenience. 
In the presence of disorder, the frequencies {on} cannot be found in general. 

Fortunately, the supersymmetry method allows us to construct a simple procedure for 
calculating the average frequency spectrum (G(w2)) if the statistical properties of the 
disorder are known and the disorder is of a simple enough type. 

Using a treatment similar to [21, 221 and [25], we introduce the Grassmann field X, 
where the Grassmannian integrations are defined as 

and the most useful integral formula 

We also note that the familiar conventional Gaussian integral is 

So using the supersymmetric integral, we can write 

(2.4) 

(2 .5)  

with 

where @,! is a supervector with two components 

( I , }  are anticommuting Grassmann variables and {S,} are commuting variables. The 
index x denotes either of the two components of the supervector. It is clear that 
the Grassmann field x introduced here plays the role of exponentiating the frequency 
squared denominator, which will make the averaging over disorder easier. 

In order to incorporate the discrete nature of the lattice model, we need to define 
the lattice superfield @(1) by 

n n 

where ( tn( l ) }  are eigenvectors of the dynamical matrix for the vibrational problem: 

DCn = 0 , 2 C n .  (2.10) 
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The inversion of equations (2.9) gives 

Equation (2.7) can be rewritten as 

(2.12) 

2 2 
G,,(w ) = -i 1 @z,,@:,, exp (-i @L%a(u2 - w, - ie)Dm d@i d@, . . . d@h dQIv 

m 

since we are simply including several integrations as factors, each of which is unity (see 
[21] for details): 

1 = 1 exp [-i@jLa(w2 - wj' - ie)Oj] d'D; ciajDj. (2.13) 

In order to compute the G(w2) one has to transform to the site representation; we 
have 

= @tl.a[(w2 - ie)l - D]@ 

where 

@' = (mt ( l ) ,  cDt(2), . , , , @'(N)) 

(2.14) 

(2.15) 

and use has been made of the completeness and equation of motion of t,, i.e. 
E,, t;(l')"(l'') = a,,,,, and equation (2.10). 

The final form of the spectrum function is 

x exp [-i@+h((o2 - ie)i - D)@] (2.16) 

where D = -(c2/2a2)Y + w i I  can be derived straightforwardly from the Lagrangian 
equation (2.1) with Y the standard force constant matrix. 

Now we are in a position to do the average over the disorder, and thus we need to 
specify the type of disorder. The simplest type of disorder is 'force constant' disorder 
[l, 15, 171 ; it can arise for example from bond defects or topological disorder in crystals. 
Of course, realistically, mass disorder exists as well. For simplicity and mathematical 
explicitness we treat only force constant disorder in this paper and leave the non-trivial 
mass disorder case to a forthcoming paper. 
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We consider that the dynamical matrix D consists of a ‘pure’ part and a part due 
to disorder, i.e. [9] 

e; (1 1’) (11’) D(ll’) = -Do(ll’) + 0;6/,, + Dr,”(ll/) = + w&,, + ~ 

2a2 2a2 
where the first two terms are the unperturbed force constant, the third is the random 
part and all the masses are the same. We assume a Gaussian random distribution 
such that the Gaussian 6-correlation law is satisfied, i.e. ( ~ ~ ~ ~ ( l ~ ’ ) c ~ ~ ~ ( l ’ ’ l ’ ” ) )  = y6,,,,,,,,,,,, 
( c : ~ , )  = 0, where 7 denotes the strength of the force constant disorder. The Gaussian 
distribution law can be derived quite naturally in most physical systems provided the 
system is large enough that the central-limit theorem can be applied and the disorder is 
not very strong (see [26]). One can surely take a Poisson distribution (and other types 
as well) in this supersymmetric functional integral formalism ; however, more numerical 
calculations will be involved to compute the vibrational frequency spectrum and one 
has difficulty obtaining analytic and closed form solutions even in the continuum limit. 

Due to the Gaussian distribution, we can easily perform the functional integrations 
to obtain 

(2.17) 

so that equation (2.16) becomes 

(2.18) 

with 

denoting the average over the disorder (see appendix 1 for details). It is clearly a 
non-local and non-linear term which precludes the possibility of getting an exact and 
closed form solution for the vibrational frequency spectrum. However, to understand 
low-frequency behaviour of the vibrational systems one only needs to study the long- 
wavelength limit, i.e. a -+ 0, the continuum limit. In that limit we will have a local Q4 

Lagrangian. To make this apparent, we expand @(l + l), @(l - 1) around @(l), and we 
find that terms of first order in a are cancelled and the next non-vanishing terms are 
O(a2);  it follows that we can neglect them safely in the continuum limit. 

3. Results and discussion 

From equation (2.18) and after taking the continuum limit our effective Lagrangian 
can be written as 
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In order to make a dimensionless Lagrangian we note that @ fields have units of 
l/energy’12 = l/(j&a)’’2 and 7 = yet .  Due to the one dimensionality, one can use 
the transfer operator method [27, 281 to solve the problem exactly. We first set the 
arguments 1 of the @ fields in the integrand of equation (2.18) to be different, say 1 
and I’ for convenience, and we will set 2 = I’ later on when we study the vibrational 
frequency spectrum which requires 1 = I’ only. We have 

1 x T(I ,  1’; R, R’) ~ * ( 1 ’ )  r(/’, n ;  R’, R”) dRo dR dR‘ 

where 

1 
R 5 (x, x*, S, S’} and dR - dX* dX dS’ dS. (3.3) n 

n labels the last site which will be infinity when we take the thermodynamic limit and 
nu gives the total length of the crystal. The kernel r in the above equation satisfies 
the following effective Schrodinger equation when passing to the continuum limit, i.e. 
a -+ 0 (see appendix 2 for details), 

T(x,x’;R,R’) = d(x-x’)d(R-R’) (3.4) 

where 

(3.5) 

with all the fields dimensionless and W = w/Ro, WO = wo/R,, R, = ( ~ i / a i ) ~ / ~ ,  and 
where 7 is also dimensionless as defined before. The 6-functions are defined in the usual 
sense, 1xI2 = X‘X and ,U will be set equal to i later on. Following the same procedures as 
in [21, 22, 291, we obtain the phonon frequency spectrum per unit mode and per site 
G ( 0 2 )  in terms of Airy functions [30] 

4 Ai’(z)Ai(z) + Bi’(z)Bi(z) 
G ( 0 2 )  = 

j’~~(37)’’~ [Ai2(z) + Bi2(z)I2 (3.6) 

where z = -(W2 - Oi)/(37)2/3. The results are quite similar to that obtained for 
disordered electronic systems, e.g. [4, 221. The similarity tells us that in one-dimensional 
systems with Gaussian-distributed random disorder, no matter whether the systems are 
vibrational or electronic, Airy functions play important roles in describing the density 
of states of the systems. Both exponential band tails and the characteristic l / w  law 
for 1D phonon systems, 1/(E2 - E : ) ’ / 2  law for 1D electronic systems within the band 
can be obtained easily by taking asymptotic expansions of the Airy functions. The nice 
properties of the Airy functions exclude singularities and exact zeros in the density of 
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Figure 1. G(W2) plotted against W2 with Gi = 0.4, where 7 + 0 (= 0.0001) for both full curve 
and broken curve (effective modulus method) results. The l / W  tails are purely consequences 
of taking the continuum limit; they should be discarded for the discrete model and the full 
curve and broken curve results should be smoothly connected at intermediate W. 

I 

\ 

0 1 2 3 4 

w2 

Figure 2. G(W2) plotted against W2 with Wi = 0.4, where ;I = 0.01 for both full curve and 
broken curve results. 

states, in general, which ties in with general discussions of one-dimensional disordered 
systems (except some special points in some special systems [31, 321). 

In the figures we plot the vibrational frequency spectrum G ( 0 2 )  with different 
values of 7. When 7 + 0 which is the clean limit, our result reproduces the unperturbed 
phonon density of states, exactly as shown in figure 1. It has l/O singularities near the 
zero-frequency (full curve) and Brillouin zone boundary (broken curve, which is again 
an exact result obtained by using the effective modulus method [33] with the continuum 
limit taken near the BZ boundary). For finite but small r, the 1 / 0  singularity disappears 
and a peak is found corresponding to the effects of the random force constant. A 
very sharp exponential band tail can be seen clearly in figure 2 and has the form 
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4 

L -I 

Figure 3. C(W2) plotted against i;j2 with ii3; = 0.4, where 7 = 0.1 for both full curve and 
broken curve results. 

- exp[-(Q2 - C&B)3'2], which is the first analytic expression for the band tails in 
disordered phonon systems. The l / W  tails (0 % 0 for full curve results; 0 4 OBZB for 
broken curve results) are purely consequences of taking the continuum limit, which 
should be discarded for real discrete lattice problems and, furthermore, the full curve 
results and broken curve results should connect smoothly at an intermediate range of 
o. However, this definitely cannot be done within the continuum model. In order to 
describe the correct behaviour of the density of states in the intermediate range of o, 
one either has to do ab initio simulations for a real discrete lattice model or take into 
account higher-order discreteness corrections that the continuum model left out and 
which will not be discussed in this paper. 

- 

4. Concluding remarks 

By employing the supersymmetric functional integral formalism we have obtained 
an exact and analytic expression for the vibrational frequency spectrum of a one- 
dimensional monatomic linear chain with force constant disorder, in the continuum 
limit. The exact analytical expression can be easily analysed to compare with results 
from other calculations in different regimes of impurity concentrations. We note that 
this is only a pure theoretical model calculation. For more realistic 1D lattice systems 
one has to consider higher-order discreteness corrections. Nonetheless, the approach 
provided a starting point for more realistic calculations without having to rely too 
heavily on numerical simulations. 

We also note that the cage potential V stabilises the system and makes the finite 
temperature displacement field averaging be finite; without this stabilising potential 
the thermal average ( x ) ~  = m. The other point we want to make is that due to 
the Gaussian distribution law, which has a non-zero probability for disordered force 
constants to reach very large negative values, the system generates some non-physical 
(negative frequency) vibrational modes. However, they are exponentially small in the 
density of states for weak disorder. Instead, one needs to choose other probability 
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distribution laws in more realistic models, such as the Poisson, to avoid this large 
negative force constant instability. 

As a consequence, one can apply this method to a series of problems which can 
be effectively mapped to a disordered harmonic linear-chain model to find out their 
vibrational frequency spectra analytically and based on that one can compute other 
interesting quantities such as the root mean displacement and the momentum. More 
interestingly, the experimentally related quantities for vibrational systems are the static 
and dynamic structural factors (Fourier transformed) which may also be found by using 
the SUSY method. This method also works for higher-dimensional problems [25, 341; 
however, there is no general guide to solving arbitrary n-dimensional supersymmetric 
functional integrations exactly so far. 
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Appendix 1 

In this appendix we will give the details of how to average over the random disorder 
potential by using the SUSY functional integral formalism. 

We need to perform the average 

I = (exp(-iE@’(l)Dran(llr)@(l’))) 
/I‘ 

(Al.1) 

where the D,,, matrix is defined as 

with 6 K  = c:an denoting the random part of the force constant. For the Gaussian case 
we have, in general, 

(A1.2) 

where the summation extends over all possible partitions of the 2n indices (1,2,, . . ,2n), 
into n parts ( I l ,  1 2 ) .  . , (12n-1, 12J and for different sites the average is uncorrelated. For 
a one-dimensional monatomic chain, we have 
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For example, the second term gives : 

using equation (A1.2) we have 

(A1.4) 

(A1.5) 

where the identity (2p)! = 2P(2p - l ) ! ! p !  has been used. The other two terms are 
similar. Adding them together we get 

[ ( @ * ( I  + 1)@(l))* + 4 ( @ * ( ~ ~ ( 1 ) ) 2  + ( Q * ( I ) @ ( ~  - 11121 

Appendix 2 

In this appendix we will show how to start from the discrete formalism and then pass 
to the continuum limit to get equation (3.4). 

From equation (3.1) the first and third terms are easily converted to the continuum 
version by considering that x u  -+ dx and @ ( l  + 1) -+ @(x + a) where a is the lattice 
constant that will be equal to dx at the continuum limit. 

As usual, we use the transfer operator method (see [28]) and introduce a delta 
function as a bilinear expansion in a set of complete orthonormal functions {vn(@)}: 

d(@,\V+1-@1) = C v i ( @ N + L ) v n ( @ l )  (A2.1) 
n 

(A2.2) 

where the particular set of functions {v iv f l}  is conveniently chosen to satisfy the transfer 
integral equation 

= exp (-En%a)vi(@*(l + l))vn(@(l + 1))  

where E,2 is the associated eigenvalue of the transfer integral equation 

(A2.3) 
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and 

(A2.5) 

is the effective potential, p will be set equal to i later on. We split equation (A2.4) 
( U ( / )  = ; [ U ( /  + 1) + ~ ( l ) ] )  just for later convenience since the system is symmetric on 
exchanging I + 1 and 1. Now set 

and Taylor expand the !,(@(/)) functions about V,(@(l + 1)) and do the Gaussian 
integrations with respect to the @ ( I )  fields, then re-sum the results; we end up with 

2a d2 
exp V'V = exp{-iaoi[E, - V, --v(@*@)])V*V. (A2.7) 

We note that v, = (l / l .awi) ln(k&i/a)  is a constant which can be absorbed into 
the normalisation constant (see [26] for details); it can also be treated as an energy 
minimum (see [ 3 5 ] )  in the discrete lattice problems, but when we absorb it into the 
normalisation constant we actually have this energy minimum as zero. 

Using the commutator identity 

e e e  = e  (A2.8) B A B A+2B+(1/3!)[A+B,[A.B]]+ ... 

and substituting equation (A2.6) into equation (A2.7), we found that the non-zero 
order correction is of the order of a2/1i (where 1; = c i /w ; )  and can thus be neglected 
in the first-order approximation, i.e. the continuum limit, as long as a < 1,. Putting all 
the dimensionless quantities as defined before into equation (A2.7) we finally obtain 
equation (3.5). 
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